Mechanism of ligand exchange studied using transition path sampling.

نویسندگان

  • Preston T Snee
  • Jennifer Shanoski
  • Charles B Harris
چکیده

The mechanism of intermolecular ligand exchange has been studied using transition path sampling (TPS) based molecular dynamics (MD) simulations. Specifically, the exchange of solvent molecules bound to unsaturated Cr(CO)5 in methanol solution has been investigated. The results of the TPS simulations have shown that there are multiple steps in the reaction mechanism. The first involves partial dissociation of the coordinated solvent from the Cr metal center followed by association with a new methanol molecule between the normally void first and second solvent layers. After diffusive motion of the exchanging ligands, the last step involves the originally bound methanol molecule moving into the bath continuum followed by solvation of the Cr metal fragment by the exchanging ligand. It has been found that the reaction center (defined as the organometallic fragment and two exchanging ligands only) and the solvent bath have favorable interactions. This is likely due to the adiabatic nature of the ligand exchange transition. The ability to understand the microscopic molecular dynamics of a chemical process based on a free energy analysis is also discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extraction-Separation of Eu(III)/Th(IV) Ions with a Phosphorylated Ligand in an Ionic Liquid

Extraction-separation of Eu(III) and Th(IV) ions from nitrate media into the ionic liquid 1-hexyl-3-methylimidazolium hexafluorophosphate by a phosphorylated salen extractant, bis(chlorophosphoryle)decahydro-2,4-di(2-hydroxyphenyl)benzo[d][1,3,6]oxadiazepine (DPO), is investigated. It is found that Eu(III) ions are extracted via a solvation mechanism, and the extraction of Th(IV) i...

متن کامل

Transition path sampling of cavitation between molecular scale solvophobic surfaces

The dynamics of a cavitation transition between repulsive plates in a Lennard-Jones system is studied using transition path sampling. It is found that the critical nucleus for the transition coincides with the formation of a vapor tube connecting the two plates. The number of particles between the plates and the tube radius are relevant order parameters. In the transition state ensemble, the di...

متن کامل

Conformational Changes in Acetylcholine Binding Protein Investigated by Temperature Accelerated Molecular Dynamics

Despite the large number of studies available on nicotinic acetylcholine receptors, a complete account of the mechanistic aspects of their gating transition in response to ligand binding still remains elusive. As a first step toward dissecting the transition mechanism by accelerated sampling techniques, we study the ligand-induced conformational changes of the acetylcholine binding protein (ACh...

متن کامل

Computing reaction rates in bio-molecular systems using discrete macro-states

Computing reaction rates in biomolecular systems is a common goal of molecular dynamics simulations. The reactions considered often involve conformational changes in the molecule, either changes in the structure of a protein or the relative position of two molecules, for example when modeling the binding of a protein and ligand. Here we will consider the general problem of computing the rate of...

متن کامل

Transition-path sampling of -hairpin folding

We examine the dynamical folding pathways of the C-terminal -hairpin of protein G-B1 in explicit solvent at room temperature by means of a transition-path sampling algorithm. In agreement with previous free-energy calculations, the resulting path ensembles reveal a folding mechanism in which the hydrophobic residues collapse first followed by backbone hydrogen-bond formation, starting with the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 127 4  شماره 

صفحات  -

تاریخ انتشار 2005